
Package: adaptivetau (via r-universe)
September 14, 2024

Type Package

Title Tau-Leaping Stochastic Simulation

Version 2.3-1

Date 2024-04-17

Author Philip Johnson

Maintainer Philip Johnson <plfj@umd.edu>

Depends R (>= 2.10.1)

Enhances compiler

Description Implements adaptive tau leaping to approximate the
trajectory of a continuous-time stochastic process as described
by Cao et al. (2007) The Journal of Chemical Physics
<doi:10.1063/1.2745299> (aka. the Gillespie stochastic
simulation algorithm). This package is based upon work
supported by NSF DBI-0906041 and NIH K99-GM104158 to Philip
Johnson and NIH R01-AI049334 to Rustom Antia.

License GPL (>= 3)

URL https://github.com/plfjohnson/adaptivetau

BugReports https://github.com/plfjohnson/adaptivetau/issues

Repository https://plfjohnson.r-universe.dev

RemoteUrl https://github.com/plfjohnson/adaptivetau

RemoteRef HEAD

RemoteSha 396f7a2cfdc4f0fbfe963a694f85da41eb28bd5b

Contents
ssa.adaptivetau . 2
ssa.exact . 6
ssa.maketrans . 7

Index 9

1

https://doi.org/10.1063/1.2745299
https://github.com/plfjohnson/adaptivetau
https://github.com/plfjohnson/adaptivetau/issues

2 ssa.adaptivetau

ssa.adaptivetau Approximate stochastic simulation algorithm

Description

Implements adaptive tau-leaping approximation for simulating the trajectory of a continuous-time
Markov process (see reference below).

Usage

ssa.adaptivetau(init.values, transitions, rateFunc, params, tf,
jacobianFunc = NULL, maxTauFunc = NULL,
deterministic = NULL, halting = NULL,
relratechange = rep(1, length(init.values)),
tl.params = NULL, reportTransitions = FALSE)

Arguments

init.values Vector of initial values for all variables. This should be a simple one-dimensional
vector of real numbers. IMPORTANT: variables must never take negative values.

transitions One of two possible data types:

• A list with length equal to the number of transitions. Each element of the
list should be a vector specifying a transition (i.e., which state(s) change and
by how much). Each entry in the vector needs a name (specifying which
state variable to change, either by name or index) and a value (specifying
the amount by which this variable will change).

• A two-dimensional matrix of integers specifying how each state variable
(rows) should be changed for a given transition (columns). Generally this
will be a sparse matrix of primarily 1s and -1s, which can make this struc-
ture inefficient.

See the example below for details as well as ssa.maketrans or the vignette
accompanying this package.

rateFunc R function that returns instantaneous transition rates for each transition in the
form a real-valued one-dimensional vector with length equal to the number of
transitions. The order of these rates must match the order in which transitions
were specified in the transitions parameter above. This function must accept
the following arguments:

• vector of current values for all state variables (in order used in the init.values
argument above)

• parameters as supplied in argument to ssa.adaptivetau
• single real number giving the current time (all simulations start at t=0)

params any R variable to be passed as-is to rateFunc, presumably specifying useful pa-
rameters.

tf final time of simulation. Due to the approximate nature of the tau-leaping algo-
rithm, the simulation may overshoot this time somewhat.

ssa.adaptivetau 3

jacobianFunc R function that returns Jacobian of transition rates. If supplied, enables the use
of the implicit tau-leaping algorithm (if appropriate; used in stiff systems). In
contrast to typical definition of Jacobian (but consistent with the transition ma-
trix parameter above), columns represent transitions (functions) and rows rep-
resent state variables (different partial derivative variables). jacobianFunc takes
the same parameters as rateFunc. NOTE: the implicit tau-leaping algorithm
will reduce the observed variance for fast-changing state variables, although the
mean will be correct.

maxTauFunc R function that returns single real number giving the maximum time step allow-
able from the current state. Only called if the adaptive tau algorithm wants to
leap in a step greater than tl.params$maxtau value. Takes same parameters as
rateFunc.

deterministic Specify transitions to be treated as deterministic. If not NULL, either a TRUE/FALSE
vector of length equal to the number of transitions -or- a integer vector of transi-
tion numbers to be treated as deterministic (i.e. applying which to the former).
Deterministic transitions will be applied every timestep using the expected de-
gree of change. Note this will almost certainly result in non-integer values for
any affected state variables. Also, note that this is still an approximation – not a
true numerical ODE solution – and at least one transition must be stochastic for
this to work at all.

halting Specify transitions which, when executed, will cause the simulation to halt. If
not NULL, either a TRUE/FALSE vector of length equal to the number of tran-
sitions -or- a integer vector of transition numbers to be treated as halting (i.e.
applying which to the former). If halting transitions are specified, then the re-
turn value is different (since we want to know which transition halted us).

relratechange one-dimensional vector of length equal to the number of state variables provid-
ing an upperbound to the ratio of amount that any transition rate will change
given a corresponding change in the state variable. In other words, if variable i
doubles, can we be assured that no transition will more than double (ratio of 1)?
If not, then you need to set this variable to be greater than 1.

tl.params Parameters to the tau-leaping algorithm itself (epsilon and delta are best ex-
plained by reading the original reference):
epsilon default 0.05; increasing will make bigger leaps resulting in potentially

more error
delta default 0.05; how close two symmetric transition rates must be before

we classify them as in partial-equilibrium. Only applies to the implicit tau
routine.

maxtau default Inf; maximum time step allowed. Should only need to specify
if rate functions are drastically non-smooth or if your rate function explictly
depends on time.

extraChecks default TRUE; whether to perform a battery of validity checks on
the state variables and rates after every call to "rateFunc." Slows down im-
plementation, but unless you are SURE you have designed your transition
matrix and rate function correctly, probably best to keep these checks.

reportTransitions

default FALSE; whether to include a matrix of executed transitions per time
interval in the output (alongside with the states at each time point).

4 ssa.adaptivetau

Details

The initial values, transition matrix & transition rates must all be designed such that variables are
always non-negative. The algorithm relies on this invariant.

See reference for details but, in brief the adaptive tau-leaping algorithm dynamically switches be-
tween three methods for simulating events:

exact no approximation – executes a single transition at a time

explicit tau-leaping subdivides transitions into those that might hit cause a variable to hit 0 (“crit-
ical”) and those that do not. Duration of time step picked dynamically with the goal of maxi-
mizing the step while minimized the change in the transition rates (the approximation assumes
that these rates do not change). Non-critical transitions are advanced by a poisson-distributed
random variable; critical transitions are handled more like the exact algorithm.

implicit tau-leaping in addition to dividing between critical and non-critical, also identifies tran-
sitions in quasi-equilbrium (reversible pairs of transition that have roughly equal forward-
backward flow). Duration of time step picked on basis of non-critical, non-equilibrium tran-
sitions. This has the potential to greatly increase the timestep size for stiff systems. Similar
idea to the explicit method but necesitates solving an implicit equation via Newton’s method.
Thus you must supply a function to calculate the Jacobian to enable this method.

All error messages that reference variables or transitions by number use 1-based numbering where
the first variable (or transition) is 1.

Consider calling enableJIT(1) before running ssa.adaptivetau. In most circumstances, this should
yield some speedup by byte-code compiling the rate function.

Value

If no halting transitions are specified, then a two-dimensional matrix with rows for every timepoint
at which the rateFunc was evaluated and columns giving the value for every state variable at that
time. The first column specifies the time.

If halting transitions are specified, then a list with two elements. The first (‘dynamics’) is the same
two-dimensional matrix as without halting transitions. The second (‘haltingTransition’) gives the
number of the transition that halted the simulation, or NA otherwise.

If the ‘reportTransitions’ option is used, then a list is returned with two elements (or three, if com-
bined with halting transitions). The final element of the list is a two-dimensional matrix called
‘transitions’ with a row for each timepoint and columns giving the number of times each transition
was executed in the between the current time and the previous time.

Note

Development of this package was supported in part by National Science Foundation award DBI-
0906041 and National Institute of Health award K99-GM104158. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author and do not nec-
essarily reflect the views of the NSF or NIH.

Author(s)

Philip Johnson

ssa.adaptivetau 5

References

Cao Y, Gillespie DT, Petzold LR, The Journal of Chemical Physics, 2007

See Also

For systems with sparse transition matrices, see helper function ssa.maketrans. ssa.exact ex-
poses a R interface to the C++ implementation of the exact, non-approximate simulation algorithm
(sometimes known as "Gillespie").

Examples

Simple Lotka-Volterra example

We have three potential transitions:
transitions = list(c(prey = +1), # prey grow

c(prey = -2, pred = +1), # predation
c(pred = -1)) # predator dies

Function to calculate transition rates, given variables and parameters
lvrates <- function(x, params, t) {

return(c(params$preygrowth*x["prey"], # rate of prey growing
x["prey"]*x["pred"]*params$eat, # rate of predation
x["pred"]*params$preddeath)) # rate of predators dying

}

Set the Lotka-Volterra parameters
params = list(preygrowth=10, eat=0.01, preddeath=10);

Set the random seed (only necessary if you want to reproduce results)
set.seed(4)

Perform the stochastic simulation!
r=ssa.adaptivetau(c(prey = 1000, pred = 500),

transitions, lvrates, params, tf=12)

Plot the results
matplot(r[,"time"], r[,c("prey","pred")], type='l', xlab='Time',

ylab='Counts (log scale)', log='y')
legend("bottomleft", legend=c("prey", "predator"), lty=1:2, col=1:2)

However, if you are interested in very fine-scale variance, perhaps the
default parameters smooth too much. Try reducing the tl.param epsilon
to see a better approximation:
s=ssa.adaptivetau(c(prey = 1000, pred = 500),

transitions, lvrates, params, tf=12,
tl.params = list(epsilon=0.01)) # reduce "epsilon"

par(mfrow=c(2,1));
matplot(r[r[,"time"]<2,"time"], r[r[,"time"]<2,c("prey","pred")],

type='l', xlab='Time', ylab='Counts', main="Original (epsilon=default)")
matplot(s[s[,"time"]<2,"time"], s[s[,"time"]<2,c("prey","pred")],

type='l', xlab='Time', ylab='Counts', main="Fine-scale (epsilon=0.01)")

6 ssa.exact

ssa.exact Exact stochastic simulation algorithm

Description

Simulates the trajectory of a continuous-time Markov process (aka. the Gillespie simulation algo-
rithm).

Usage

ssa.exact(init.values, transitions, rateFunc, params, tf,
reportTransitions = FALSE)

Arguments

init.values Vector of initial values for all variables. This should be a simple one-dimensional
vector of real numbers. IMPORTANT: variables must never take negative values.

transitions Two-dimensional matrix of integers specifying how each state variable (rows)
should be changed for a given transition (columns). Generally this will be a
sparse matrix of primarily 1s and -1s.

rateFunc R-function that returns instantaneous transition rates for each transition in the
form a real-valued one-dimensional vector with length equal to the number of
transitions. The order of these rates must match the order in which transitions
were specified in the transitions parameter above. This function must accept
the following arguments:

• vector of current values for all state variables (in order used in the init.values
argument above)

• parameters as supplied in argument to ssa.adaptivetau
• single real number giving the current time (all simulations start at t=0)

params any R variable to be passed as-is to rateFunc, presumably specifying useful pa-
rameters.

tf final time of simulation. Due to the approximate nature of the tau-leaping algo-
rithm, the simulation may overshoot this time somewhat.

reportTransitions

default FALSE; whether to include a matrix of executed transitions per time
interval in the output (alongside with the states at each time point).

Details

This function is supplied as a bonus with the adaptivetau package, since the C++ function that under-
lies this (exact) stochastic simulation algorithm is used in the (approximate) adaptive tau stochastic
simulation as well.

The initial values, transition matrix, and transition rates must all be designed such that variables are
always non-negative. The algorithm relies on this invariant.

Consider calling enableJIT(1) before running ssa.exact. In most circumstances, this should yield
some speedup by byte-code compiling the rate function.

ssa.maketrans 7

Value

Two-dimensional matrix with rows for every timepoint at which the rateFunc was evaluated and
columns giving the value for every state variable at that time. The first column specifies the time.

If the ‘reportTransitions’ option is used, then a list is returned with two elements. The first element is
the ‘dynamics’ matrix described above. The second is a two-dimensional matrix called ‘transitions’
with a row for each timepoint and columns giving the number of times each transition was executed
between the current time and the previous time.

Author(s)

Philip Johnson

See Also

This function is a bonus the comes along with the approximate (but faster) ssa.adaptivetau. For
systems with sparse transition matrices, see helper function ssa.maketrans.

Examples

Lotka-Volterra example
lvrates <- function(x, params, t) {

with(params, {
return(c(preygrowth*x["prey"], ## prey growth rate

x["prey"]*x["pred"]*eat, ## prey death / predator growth rate
x["pred"]*preddeath)) ## predator death rate

})
}
params=list(preygrowth=10, eat=0.01, preddeath=10);
r=ssa.exact(c(prey = 1000, pred = 500),

matrix(c(1,0, -2,1, 0,-1), nrow=2), lvrates, params, tf=2)
matplot(r[,"time"], r[,c("prey","pred")], type='l', xlab='Time', ylab='Counts')
legend("topleft", legend=c("prey", "predator"), lty=1:2, col=1:2)

ssa.maketrans Make transition matrix

Description

Helper function to (easily) construct sparse transition matrices for ssa.adapativetau.

Usage

ssa.maketrans(variables, ...)

8 ssa.maketrans

Arguments

variables Either the number of variables in your system OR a vector of strings specifying
the names of the variables (in which case the length of this vector is the number
of variables). The number of variables equals the number of rows in the returned
transition matrix.

... At least one additional argument is *required*. Each should be a matrix with
an arbitrary number of columns (each represents a separate transition) and an
even number of rows. Going down a particular column, entries alternate be-
tween specifying the variable that will change and the amount by which it will
change. Variables be specified either by numerical index (1,2,...,numVariables)
or character name (if names supplied in the parameter above). See examples
below.

Details

Making large transition matrices can be a real pain, particularly if the entries in the end will be quite
sparse. The concept of this function is simple but the easiest way to understand it is probably to
check out the examples.

Value

two-dimensional matrix with rows for each variable and columns for each transition.

Author(s)

Philip Johnson

See Also

You probably only want to use this in preparation for calling ssa.adaptivetau.

Examples

trivial Lotka-Volterra example from ssa.adaptivetau
nu = ssa.maketrans(2, #number of variables

rbind(1, +1),
rbind(1, -1, 2, +1),
rbind(2, -1))

slightly more complicated SIR epidemiological model with two distinct
susceptible and infected variables (think male and female), birth
(into S) and death (exclusively from I and R)
nu = ssa.maketrans(c("Sm", "Sf", "Im", "If", "R"), #list of variable names

rbind(c("Sm","Sf"), +1),
rbind(c("Sm","Sf"), -1, c("Im","If"), +1),
rbind(c("Im","If"), -1),
rbind(c("Im","If"), -1, "R", +1),
rbind("R", -1))

Index

∗ datagen
ssa.adaptivetau, 2
ssa.exact, 6
ssa.maketrans, 7

∗ ts
ssa.adaptivetau, 2

adaptivetau (ssa.adaptivetau), 2

enableJIT, 4, 6

ssa.adaptivetau, 2, 7, 8
ssa.exact, 5, 6
ssa.maketrans, 2, 5, 7, 7

which, 3

9

	ssa.adaptivetau
	ssa.exact
	ssa.maketrans
	Index

